Elementary Stochastic Calculus With Finance In View

Author by : Thomas Mikosch
Language : en
Publisher by : World Scientific
Format Available : PDF, ePub, Mobi
Total Read : 92
Total Download : 705
File Size : 48,8 Mb
pdf pdf

Description : Modelling with the Ito integral or stochastic differential equations has become increasingly important in various applied fields, including physics, biology, chemistry and finance. However, stochastic calculus is based on a deep mathematical theory. This book is suitable for the reader without a deep mathematical background. It gives an elementary introduction to that area of probability theory, without burdening the reader with a great deal of measure theory. Applications are taken from stochastic finance. In particular, the Black -- Scholes option pricing formula is derived. The book can serve as a text for a course on stochastic calculus for non-mathematicians or as elementary reading material for anyone who wants to learn about Ito calculus and/or stochastic finance.


Brownian Motion Calculus

Author by : Ubbo F. Wiersema
Language : en
Publisher by : John Wiley & Sons
Format Available : PDF, ePub, Mobi
Total Read : 33
Total Download : 903
File Size : 53,7 Mb
pdf pdf

Description : Brownian Motion Calculus presents the basics of Stochastic Calculus with a focus on the valuation of financial derivatives. It is intended as an accessible introduction to the technical literature. A clear distinction has been made between the mathematics that is convenient for a first introduction, and the more rigorous underpinnings which are best studied from the selected technical references. The inclusion of fully worked out exercises makes the book attractive for self study. Standard probability theory and ordinary calculus are the prerequisites. Summary slides for revision and teaching can be found on the book website.


Stochastic Calculus With Applications To Stochastic Portfolio Optimisation

Author by : Daniel Michelbrink
Language : en
Publisher by : diplom.de
Format Available : PDF, ePub, Mobi
Total Read : 21
Total Download : 453
File Size : 48,6 Mb
pdf pdf

Description : Inhaltsangabe:Introduction: The present paper is about continuous time stochastic calculus and its application to stochastic portfolio selection problems. The paper is divided into two parts: The first part provides the mathematical framework and consists of Chapters 1 and 2, where it gives an insight into the theory of stochastic process and the theory of stochastic calculus. The second part, consisting of Chapters 3 and 4, applies the first part to problems in stochastic portfolio theory and stochastic portfolio optimisation. Chapter 1, "Stochastic Processes", starts with the construction of stochastic process. The significance of Markovian kernels is discussed and some examples of process and emigroups will be given. The simple normal-distribution will be extended to the multi-variate normal distribution, which is needed for introducing the Brownian motion process. Finally, another class of stochastic process is introduced which plays a central role in mathematical finance: the martingale. Chapter 2, "Stochastic Calculus", begins with the introduction of the stochastic integral. This integral is different to the Lebesgue-Stieltjes integral because of the randomness of the integrand and integrator. This is followed by the probably most important theorem in stochastic calculus: It o s formula. It o s formula is of central importance and most of the proofs of Chapters 3 and 4 are not possible without it. We continue with the notion of a stochastic differential equations. We introduce strong and weak solutions and a way to solve stochastic differential equations by removing the drift. The last section of Chapter 2 applies stochastic calculus to stochastic control. We will need stochastic control to solve some portfolio problems in Chapter 4. Chapter 3, "Stochastic Portfolio Theory", deals mainly with the problem of introducing an appropriate model for stock prices and portfolios. These models will be needed in Chapter 4. The first section of Chapter 3 introduces a stock market model, portfolios, the risk-less asset, consumption and labour income processes. The second section, Section 3.2, introduces the notion of relative return as well as portfolio generating functions. Relative return finds application in Chapter 4 where we deal with benchmark optimisation. Benchmark optimisation is optimising a portfolio with respect to a given benchmark portfolio. The final section of Chapter 3 contains some considerations about the long-term behaviour of [...]


An Elementary Introduction To Stochastic Interest Rate Modeling

Author by : Nicolas Privault
Language : en
Publisher by : World Scientific
Format Available : PDF, ePub, Mobi
Total Read : 36
Total Download : 275
File Size : 55,5 Mb
pdf pdf

Description : Interest rate modeling and the pricing of related derivatives remain subjects of increasing importance in financial mathematics and risk management. This book provides an accessible introduction to these topics by a step-by-step presentation of concepts with a focus on explicit calculations. Each chapter is accompanied with exercises and their complete solutions, making the book suitable for advanced undergraduate and graduate level students. This second edition retains the main features of the first edition while incorporating a complete revision of the text as well as additional exercises with their solutions, and a new introductory chapter on credit risk. The stochastic interest rate models considered range from standard short rate to forward rate models, with a treatment of the pricing of related derivatives such as caps and swaptions under forward measures. Some more advanced topics including the BGM model and an approach to its calibration are also covered.


Option Pricing And Estimation Of Financial Models With R

Author by : Stefano M. Iacus
Language : en
Publisher by : John Wiley & Sons
Format Available : PDF, ePub, Mobi
Total Read : 10
Total Download : 551
File Size : 51,9 Mb
pdf pdf

Description : Presents inference and simulation of stochastic process in the field of model calibration for financial times series modelled by continuous time processes and numerical option pricing. Introduces the bases of probability theory and goes on to explain how to model financial times series with continuous models, how to calibrate them from discrete data and further covers option pricing with one or more underlying assets based on these models. Analysis and implementation of models goes beyond the standard Black and Scholes framework and includes Markov switching models, Lévy models and other models with jumps (e.g. the telegraph process); Topics other than option pricing include: volatility and covariation estimation, change point analysis, asymptotic expansion and classification of financial time series from a statistical viewpoint. The book features problems with solutions and examples. All the examples and R code are available as an additional R package, therefore all the examples can be reproduced.


Stochastic Calculus With Infinitesimals

Author by : Frederik S. Herzberg
Language : en
Publisher by : Springer
Format Available : PDF, ePub, Mobi
Total Read : 74
Total Download : 415
File Size : 43,8 Mb
pdf pdf

Description : Stochastic analysis is not only a thriving area of pure mathematics with intriguing connections to partial differential equations and differential geometry. It also has numerous applications in the natural and social sciences (for instance in financial mathematics or theoretical quantum mechanics) and therefore appears in physics and economics curricula as well. However, existing approaches to stochastic analysis either presuppose various concepts from measure theory and functional analysis or lack full mathematical rigour. This short book proposes to solve the dilemma: By adopting E. Nelson's "radically elementary" theory of continuous-time stochastic processes, it is based on a demonstrably consistent use of infinitesimals and thus permits a radically simplified, yet perfectly rigorous approach to stochastic calculus and its fascinating applications, some of which (notably the Black-Scholes theory of option pricing and the Feynman path integral) are also discussed in the book.


Fundamentals Of Actuarial Mathematics

Author by : S. David Promislow
Language : en
Publisher by : John Wiley & Sons
Format Available : PDF, ePub, Mobi
Total Read : 63
Total Download : 123
File Size : 53,5 Mb
pdf pdf

Description : Provides a comprehensive coverage of both the deterministic and stochastic models of life contingencies, risk theory, credibility theory, multi-state models, and an introduction to modern mathematical finance. New edition restructures the material to fit into modern computational methods and provides several spreadsheet examples throughout. Covers the syllabus for the Institute of Actuaries subject CT5, Contingencies Includes new chapters covering stochastic investments returns, universal life insurance. Elements of option pricing and the Black-Scholes formula will be introduced.


Elementary Calculus Of Financial Mathematics

Author by : A. J. Roberts
Language : en
Publisher by : SIAM
Format Available : PDF, ePub, Mobi
Total Read : 49
Total Download : 837
File Size : 42,9 Mb
pdf pdf

Description : Financial mathematics and its calculus introduced in an accessible manner for undergraduate students.


Topics In Stochastic Processes

Author by : Robert B. Ash
Language : en
Publisher by : Academic Pr
Format Available : PDF, ePub, Mobi
Total Read : 10
Total Download : 350
File Size : 52,7 Mb
pdf pdf

Description : Stochastic Processes, Introduction, Covariance functions, Second order calculus, Karhunen-loeve expansion, Estimation problems, Notes; Spectral theory and prediction, Introduction, L Stochastic integrals, Decomposition of stationary processes, Examples of discrete parameter processes, Discrete parameter prediction: Special cases, Discrete parameter prediction: General solution, Examples of continuous parameter processes; Continuos parameter prediction special cases; yaglom's method, Some stochastic differential equations, Continuos parameter prediction: remarks on the general solution, Notes; Ergodic theory, Ergodicity and mixing, The pointwise ergodic theorem, Applications to real analysis, Applications to Markov chains, The Shannon-mcMillan theorem, Notes; Sample function analysis of continuous parameter stochastic processes, Separability, Measurability, One-Dimensional brownian motion, Law of the iterated logarithm, Markov processes, Processes with independent increments, Continuous parameter martingales, The strong Markov property, Notes; The ito integral and stochastic differential equations, Definitions of the ito integral, Existence and uniqueness theorems for stochastic differential equations, Stochastic differentials: A chain rule, Notes.


Risk

Author by :
Language : en
Publisher by :
Format Available : PDF, ePub, Mobi
Total Read : 27
Total Download : 671
File Size : 43,8 Mb
pdf pdf

Description :